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Abstract. We study the production of neutralinos e+e− → χ̃0
i χ̃

0
j with polarized beams and the subsequent

decays χ̃0
i → χ̃0

k`+`− and χ̃0
j → χ̃0

l `
+`−, including the complete spin correlations between production

and decay. We present analytical formulae for the differential cross section of the combined process of
production and decay of neutralinos. We also allow for complex couplings. The spin correlations have a
strong influence on the decay angular distributions and the corresponding forward–backward asymmetries.
They are very sensitive to the SUSY parameters and depend strongly on the beam polarizations. We present
numerical results for the cross section and the electron forward–backward asymmetry for e+e− → χ̃0

1χ̃
0
2,

χ̃0
2 → χ̃0

1e
+e−. We study the dependence on the parameter M ′ for various mass splittings between ẽL and

ẽR and different beam polarizations.

1 Introduction

The search for supersymmetric (SUSY) particles is one of
the main goals of present and future colliders. In particu-
lar, an e+e− linear collider will be an excellent discovery
machine for SUSY particles [1]. Experiments at a linear
collider will also allow us to determine precisely the pa-
rameters of the underlying SUSY model [2].

The neutralinos, the supersymmetric partners of the
neutral gauge and Higgs bosons, are of particular interest
as they are expected to be relatively light. Most studies
of neutralino production e+e− → χ̃0

i χ̃
0
j , i, j=1,. . .,4, and

decays have been performed in the Minimal Supersym-
metric Standard Model (MSSM) (see [3–5], and references
therein). For a clear identification of neutralinos a precise
analysis of their decay characteristics is indispensable. By
measuring cross sections, branching ratios, various energy
and angular distributions of the decay products of the
neutralinos, one obtains valuable information about the
parameters of the MSSM.

Since decay angular distributions depend on the polar-
ization of the parent particles one has to take into account
the spin correlations between production and decay of the
neutralinos. In general, quantum mechanical interference
effects between various polarization states of the decaying
particles preclude simple factorization of the differential
cross section into a production and a decay factor [6,7],
unless the production amplitude is dominated by a sin-
gle spin component [8]. A variety of event generators for
production and decay of SUSY particles, such as DFGT,

SUSYGEN, GRACE and CompHEP [9], have been devel-
oped which include spin correlations between production
and decay.

In a previous paper [10] the process e+e− → χ̃0
i χ̃

0
j ,

i, j=1,. . .,4, with unpolarized beams and the subsequent
leptonic decays χ̃0

i → χ̃0
k`+`−, χ̃0

j → χ̃0
l `

+`− have been
studied with complete spin correlations. Some results for
polarized beams have been presented in [11]. In the present
paper we give the complete analytical formulae for polar-
ized beams. We fully include the spin correlations between
production and decay. The formulae are given in a trans-
parent form in the laboratory system (which is identical
to the overall CMS) in terms of the basic kinematic vari-
ables. Moreover, we include complex couplings allowing
for studies of CP violating phenomena. The expression
for the differential cross section is composed of the joint
spin density matrix for the production of neutralinos and
the decay matrices for their leptonic decays. Our formulae
can easily be extended to hadronic decays.

The masses and couplings of the neutralinos depend
on the MSSM parameter M ′, M , µ and tanβ. The pa-
rameters M , µ and tanβ can in principle be determined
by chargino production alone [12,13]. The cross section for
chargino production with polarized beams and the decay
angular distributions also give information on the sneu-
trino mass mν̃ [14]. However, a precise determination of
the parameter M ′ is only possible in the neutralino sec-
tor. A study of neutralino production and decay also gives
information about the masses of the left and right selec-
trons, mẽL

and mẽR
.
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It is known that the forward–backward asymmetry of
the production process e+e− → χ̃0

i χ̃
0
j vanishes due to

the Majorana nature of the neutralinos [3,15,16]. How-
ever, taking into account neutralino decay, for instance
χ̃0

i → `+`−χ̃0
k, the forward–backward asymmetry AFB of

one of the decay leptons does not vanish [10,11]. This is a
consequence of spin correlations between production and
decay. As we shall show this AFB depends very sensitively
on the SUSY parameters. Furthermore, it depends very
strongly on the beam polarization. The forward–backward
asymmetry AFB of the decay lepton is due to a complex
interplay of the Z and ˜̀

L, ˜̀
R exchange amplitudes in pro-

duction and decay, where the polarization of χ̃0
i plays a

crucial rôle. The polarization vector of χ̃0
i is determined by

the characteristics of the production process and strongly
influences the decay distribution.

The main purpose of our paper is the presentation
of the formulae for the combined process e+e− → χ̃0

i χ̃
0
j ,

χ̃0
i → `+`−χ̃0

k and χ̃0
j → `+`−χ̃0

l , with both beams polar-
ized. We also present numerical results for the cross sec-
tion and the lepton forward–backward asymmetry AFB

of e+e− → χ̃0
2χ̃

0
1, χ̃0

2 → `+`−χ̃0
1. In particular, we study

their dependence on M ′, m˜̀
L

and m˜̀
R
, and on the beam

polarization.
In Sect. 2 we present the formalism used. In Sect. 3 we

give the formulae for the spin density production matrix
of the neutralinos in the laboratory system for polarized
beams. In Sect. 4 we give the decay matrices for the lep-
tonic decay of χ̃0

i and χ̃0
j in covariant form. In the Sect. 5

we present our numerical results for the cross section and
the forward–backward asymmetry AFB of the decay lep-
ton as a function of the parameter M ′ for various slepton
masses m˜̀

L
, m˜̀

R
and for different beam polarizations.

2 Definitions and formalism

We give the analytical formulae for the differential cross
section of neutralino production

e−(p1) + e+(p2) → χ̃0
i (p3) + χ̃0

j (p4), (1)

with polarized beams and the subsequent leptonic decays

χ̃0
i (p3) → χ̃0

k(p5) + `+(p6) + `−(p7), (2)
χ̃0

j (p4) → χ̃0
l (p8) + `+(p9) + `−(p10), (3)

with complete spin correlations between production and
decay.

2.1 Lagrangian and couplings

The parts of the interaction Lagrangian of the MSSM rel-
evant for our study are (in our notation and conventions
we follow closely [17]):

LZ0`+`− = − g

cos θW
Zµ

¯̀γµ[L`PL + R`PR]`, (4)

LZ0χ̃0
i
χ̃0

j
=

1
2

g

cos θW
Zµ

¯̃χ0
i γ

µ[O
′′L
ij PL + O

′′R
ij PR]χ̃0

j , (5)

L`˜̀χ̃0
i

= gfL
`i

¯̀PRχ̃0
i
˜̀
L + gfR

`i
¯̀PLχ̃0

i
˜̀
R + h.c.,

i, j = 1, · · · , 4. (6)

The couplings are:

L` = T3` − e` sin2 θW , R` = −e` sin2 θW , (7)

fL
`i =−

√
2
[

1
cos θW

(T3` − e` sin2 θW )Ni2+e` sin θW Ni1

]
,

fR
`i = −

√
2e` sin θW

[
tan θW N∗

i2 − N∗
i1

]
, (8)

O
′′L
ij = −1

2

(
Ni3N

∗
j3 − Ni4N

∗
j4

)
cos 2β

−1
2

(
Ni3N

∗
j4 + Ni4N

∗
j3

)
sin 2β,

O
′′R
ij = −O

′′L∗
ij , with i,j = 1, . . . , 4. (9)

where PL,R = 1
2 (1 ∓ γ5), g is the weak coupling constant

(g = e/ sin θW , e > 0), and e` and T3` denote the charge
and the third component of the weak isospin of the lepton
`, tanβ = v2/v1 is the ratio of the vacuum expectation
values of the two neutral Higgs fields. Nij is the unitary 4×
4 matrix which diagonalizes the neutral gaugino-higgsino
mass matrix Yαβ , NiαYαβNkβ = mχ̃0

i
δik. We use the basis

γ̃, Z̃, H̃0
a , H̃0

b [3].

2.2 CP conserving and CP violating case

In the formulae for the cross section we shall present in
the following, one has to distinguish between two cases,
CP conservation and CP violation: If CP is conserved the
neutralino mass matrix Yαβ is real and the matrix Nij

can be chosen real and orthogonal. Then all the couplings
given in (8), (9) are real. In this case some of the mass
eigenvalues may be negative. We therefore write the eigen-
values in the form mχ̃0

i
= ηimi, i = 1, . . . , 4, with mi ≥ 0

and ηi = ±1 [3]. ηi is related to the CP eigenvalue of the
neutralino χ̃0

i [18].
If CP is violated the neutralino mass matrix is complex

and the matrix Nij is complex and unitary. In this case the
diagonalization of the mass matrix is done with the sin-
gular value decomposition method, NiαYαβNkβ = miδik,
mi ≥ 0. In this method all masses mi are chosen positive.
The neutralino couplings, (8), (9), are complex.

The formulae given below are applicable to both cases.
In the case of CP conservation the imaginary parts of all
couplings are zero and the sign ηi of the mass eigenvalues,
appearing explicitly in the formulae, has to be taken into
account.

In the case of CP violation the imaginary parts of the
couplings do not vanish. All factors ηi appearing in the
formulae have to be set ηi = +1.

2.3 Helicity amplitudes and cross section

For the calculation of the amplitude of the combined pro-
cesses of neutralino production and decays, (1)–(3), we
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Fig. 1a–f. Feynman diagrams for the
s, t, u channel of the production pro-
cess, e+e− → χ̃0

i χ̃
0
j , and the si, ti, ui

and sj , tj , uj channels of the decay pro-
cesses χ̃0

i → χ̃0
k`+`− and χ̃0

j → χ̃0
l `

+`−.

use the same formalism as for the chargino production
and decays [13], following the method of [19]. The helicity
amplitudes for the production (1) are

T
λiλj

P = T
λiλj

P (s, Z) + T
λiλj

P (t, ẽL) + T
λiλj

P (t, ẽR)

+T
λiλj

P (u, ẽL) + T
λiλj

P (u, ẽR), (10)

and those for the decays, (2) and (3) are

TD,λi
= TD,λi

(si, Z) + TD,λi
(ti, ˜̀

L) + TD,λi
(ti, ˜̀

R)

+TD,λi(ui, ˜̀
L) + TD,λi(ui, ˜̀

R), (11)

TD,λj = TD,λj (sj , Z) + TD,λj (tj , ˜̀
L) + TD,λj (tj , ˜̀

R)

+TD,λj (uj , ˜̀
L) + TD,λj (uj , ˜̀

R). (12)

They correspond to the Feynman diagrams in Fig. 1, and
are given in the Appendix A, (A.1)–(A.12).

We introduce the kinematic variables s = (p1 + p2)2,
t = (p1 − p4)2, and u = (p1 − p3)2 for the production
process, (1), and si = (p6 + p7)2, ti = (p3 − p6)2, ui =
(p3 − p7)2 for the decay process of the neutralino χ̃0

i , (2),
and sj = (p9 + p10)2, tj = (p4 − p9)2 and uj = (p4 − p10)2
for the decay of the neutralino χ̃0

j , (3), with the particle
momenta pk as denoted in (1)–(3).

The amplitude for the whole process is

T = ∆(χ̃0
i )∆(χ̃0

j )
∑
λi,λj

T
λiλj

P TD,λi
TD,λj

, (13)

where ∆(χ̃0
i ) = 1/[p2

3 − m2
i + imiΓi], mi, Γi, and ∆(χ̃0

j ) =
1/[p2

4 − m2
j + imjΓj ], mj , Γj denote the propagator, mass

and width of χ̃0
i and χ̃0

j , respectively. For these propaga-
tors we use the narrow width approximation.
The differential cross section in the laboratory system is
then given by:

dσ =
1

8E2
b

|T |2(2π)4δ4

(
p1 + p2 −

∑
i

pi

)

×dlips(p3 . . . p10), (14)

Eb =
√

s/2 denotes the beam energy and dlips(p3, . . . , p10)
is the Lorentz invariant phase space element.

The amplitude squared |T |2 of the combined processes
of production and decays, (13), is given by:

|T |2 = 4|∆(χ̃0
i )|2|∆(χ̃0

j )|2
(
PD(χ̃0

i )D(χ̃0
j )

+
3∑

a=1

Σa
P (χ̃0

i )Σ
a
D(χ̃0

i )D(χ̃0
j )

+
3∑

b=1

Σb
P (χ̃0

j )Σ
b
D(χ̃0

j )D(χ̃0
i )

+
3∑

a,b=1

Σab
P (χ̃0

i χ̃
0
j )Σ

a
D(χ̃0

i )Σ
b
D(χ̃0

j )
)
. (15)
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Table 1. cL(αβ), cR(αβ) for longitudinal beam polarization
P 3

−(P 3
+) of e−(e+), α, β denote the exchanged particles, L`,

R` are defined in (7). For unpolarized beams one has P 3
− =

P 3
+ = 0.

(αβ) cL(αβ) cR(αβ)

(Z0Z0) L2
`(1 − P 3

−)(1 + P 3
+) R2

` (1 + P 3
−)(1 − P 3

+)
(Z0ẽL) L`(1 − P 3

−)(1 + P 3
+) 0

(Z0ẽR) 0 R`(1 + P 3
−)(1 − P 3

+)
(ẽLẽL) (1 − P 3

−)(1 + P 3
+) 0

(ẽRẽR) 0 (1 + P 3
−)(1 − P 3

+)

Here a, b=1, 2, 3 refer to the polarization vectors of χ̃0
i

and χ̃0
j defined in (26)–(31) below. If one neglects all spin

correlations between production and decay only the first
term in (15) will contribute. The second and third term
describe the spin correlations between the production and
the decay processes χ̃0

i → χ̃0
k`+`− and χ̃0

j → χ̃0
``

+`−,
respectively, because Σa

P (χ̃0
i )(Σ

b
P (χ̃0

j )) as well as Σa
D(χ̃0

i )
(Σb

D(χ̃0
j )) depend on the polarization of the neutralino

χ̃0
i (χ̃

0
j ). Since Σab

P (χ̃0
i χ̃

0
j ) depends on the polarizations of

both neutralinos the last term is due to spin-spin corre-
lations between both decaying neutralinos (see Appendix
(B.5)).

Owing to the Majorana character the spin correlations
do not influence the energy distribution of the neutralino
decay products and the opening angle distribution be-
tween the leptons from the decay of one of the neutralinos.
Therefore, these distributions are given only by the first
term PD(χ̃0

i )D(χ̃0
j ) in (15) [10,11].

We give the explicit expressions for P , Σa
P (χ̃0

i ), Σb
P (χ̃0

j ),
Σab

P (χ̃0
i χ̃

0
j ) in Sect. 3 and for the quantities D(χ̃0

i ), Σa
D(χ̃0

i ),
D(χ̃0

j ), Σb
D(χ̃0

j ) in Sect. 4.

3 Spin-density production matrix

In this section we give the analytical formulae for the
quantities P , Σa

P (χ̃0
i ), Σb

P (χ̃0
j ), Σab

P (χ̃0
i χ̃

0
j ), (15), for the

production in the laboratory system.
It is useful to introduce the abbrevations cL(αβ),

cR(αβ) as shown in Table 1. P 3
− (P 3

+) is the longitudi-
nal beam polarization of e−(e+), and L`(R`) is defined in
(7). The arguments α, β denote the exchanged particles.
Generally cL(αβ) (cR(αβ)) is large for P 3

− < 0, P 3
+ > 0

(P 3
− > 0, P 3

+ < 0), and favours left(right) selectron ex-
change.

3.1 Neutralino polarization independent quantities

The expression P of (15) is independent of the neutralino
polarization and reads:

P = P (ZZ) + P (ZẽL) + P (ZẽR)
+P (ẽLẽL) + P (ẽRẽR), (16)

with

P (ZZ) = 2
g4

cos4 ΘW
|∆s(Z)|2[cR(ZZ) + cL(ZZ)]E2

b

×
{

|O′′L
ij |2EiEj

−[(ReO
′′L
ij )2 − (ImO

′′L
ij )2]ηiηjmimj

}
, (17)

P (ZẽL) =
g4

cos2 ΘW
cL(ZẽL)E2

b Re
{

∆s(Z)

×
[

− (∆t∗(ẽL)fL∗
`i fL

`jO
′′L∗
ij

+∆u∗(ẽL)fL
`if

L∗
`j O

′′L
ij )ηiηjmimj

−(∆t∗(ẽL)fL∗
`i fL

`jO
′′L
ij

−∆u∗(ẽL)fL
`if

L∗
`j O

′′L∗
ij )2Ebq cos Θ

+(∆t∗(ẽL)fL∗
`i fL

`jO
′′L
ij + ∆u∗(ẽL)fL

`if
L∗
`j O

′′L∗
ij )

×(EiEj + q2 cos2 Θ)
]}

, (18)

P (ẽLẽL) =
g4

4
cL(ẽLẽL)E2

b

{
|fL

`i |2|fL
`j |2

×
[
(|∆t(ẽL)|2 + |∆u(ẽL)|2)(EiEj + q2 cos2 Θ)

−(|∆t(ẽL)|2 − |∆u(ẽL)|2)2Ebq cos Θ
]

−Re{(fL∗
`i )2(fL

`j)
2∆u(ẽL)∆t∗(ẽL)}

×2ηiηjmimj

}
. (19)

P (ZẽR), P (ẽRẽR): To obtain these quantities one has to
exchange in (18) and (19)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

The propagators are defined as follows:

∆s(Z) =
i

s − m2
Z + imZΓZ

,

∆t(ẽL,R) =
i

t − m2
ẽL,R

+ imẽL,R
ΓẽL,R

,

∆u(ẽL,R) =
i

u − m2
ẽL,R

+ imẽL,R
ΓẽL,R

, (20)

where mZ , ΓZ , mẽL
, ΓẽL

, mẽR
, ΓẽR

denote the correspond-
ing mass and width of the exchanged particle.

The angle Θ is the scattering angle between the in-
coming e−(p1) beam and the outgoing neutralino χ̃0

j (p4),
the azimuth can be chosen equal to zero. For our study of
the whole process of production and subsequent decay it is
convenient to choose a coordinate frame in the laboratory
system, where the momenta are given by:

p1 = Eb(1,− sinΘ, 0, cos Θ), (21)
p2 = Eb(1, sinΘ, 0,− cos Θ), (22)
p3 = (Ei, 0, 0,−q), (23)
p4 = (Ej , 0, 0, q), (24)
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with

Ei =
s + m2

i − m2
j

2
√

s
, Ej =

s + m2
j − m2

i

2
√

s
,

q =
λ

1
2 (4E2

b , m2
i , m

2
j )

2
√

s
, (25)

where mi, mj the masses of the neutralinos and λ the kine-
matical triangle function which is given by λ(x, y, z) =
x2 + y2 + z2 − 2xy − 2xz − 2yz.

3.2 Contributions of neutralino polarization

Now we give the terms of (15) which depend on the polar-
ization states of the neutralinos. For the neutralino χ̃0

i (χ̃
0
j )

with momentum p3(p4) we introduce three spacelike po-
larization vectors sa

µ(χ̃0
i )(s

b
µ(χ̃0

j )), (a, b=1, 2, 3), which
together with pµ

3/m(pµ
4/m) form an orthonormal set [19].

In the laboratory system, see (21)–(24), we choose the fol-
lowing set of polarization vectors:

s1(χ̃0
i ) = (0,−1, 0, 0), (26)

s2(χ̃0
i ) = (0, 0, 1, 0), (27)

s3(χ̃0
i ) =

1
mi

(q, 0, 0,−Ei), (28)

s1(χ̃0
j ) = (0, 1, 0, 0), (29)

s2(χ̃0
j ) = (0, 0, 1, 0), (30)

s3(χ̃0
j ) =

1
mj

(q, 0, 0, Ej), (31)

where s3 denotes the longitudinal polarization, s1 the trans-
verse polarization in the scattering plane, and s2 the trans-
verse polarization perpendicular to the scattering plane.

3.2.1 Polarization of χ̃0
i

We give the expression for Σa
P (χ̃0

i ) of (15), where a =1, 2,
3 indicates the direction of the polarization vector sa(χ̃0

i ),
as given in (26)–(28). It can be decomposed as:

Σa
P (χ̃0

i ) = Σa
P (χ̃0

i , ZZ) + Σa
P (χ̃0

i , ZẽL) + Σa
P (χ̃0

i , ZẽR)
+Σa

P (χ̃0
i , ẽLẽL) + Σa

P (χ̃0
i , ẽRẽR). (32)

1. The contributions of transverse polarization s1(χ̃0
i ) in

the scattering plane read:

Σ1
P (χ̃0

i , ZZ) = 2
g4

cos4 ΘW
|∆s(Z)|2E2

b sinΘ(cR(ZZ)

− cL(ZZ))
[
|O′′L

ij |2ηimiEj − [(ReO
′′L
ij )2

− (ImO
′′L
ij )2]ηjmjEi

]
, (33)

Σ1
P (χ̃0

i , ZẽL) =
g4

cos2 ΘW
cL(ZẽL)E2

b sinΘ

×
[

− Re
{
∆s(Z)

[
fL

`if
L∗
`j O

′′L∗
ij ∆u∗(ẽL)

+ fL∗
`i fL

`jO
′′L
ij ∆t∗(ẽL)

]
ηimiEj

}
+ Re

{
∆s(Z)

[
fL

`if
L∗
`j O

′′L
ij ∆u∗(ẽL)

+ fL∗
`i fL

`jO
′′L∗
ij ∆t∗(ẽL)

]
ηjmjEi

}
− Re

{
∆s(Z)

[
fL

`if
L∗
`j O

′′L∗
ij ∆u∗(ẽL)

− fL∗
`i fL

`jO
′′L
ij ∆t∗(ẽL)

]
× ηimiq cos Θ

}]
, (34)

Σ1
P (χ̃0

i , ẽLẽL) = −g4

4
cL(ẽLẽL)E2

b sinΘ
{

|fL
`i |2|fL

`j |2

×
[
(|∆t(ẽL)|2 + |∆u(ẽL)|2)ηimiEj

− (|∆t(ẽL)|2 − |∆u(ẽL)|2)ηimiq cos Θ
]

− 2Re{(fL∗
`i )2(fL

`j)
2∆u(ẽL)

× ∆t∗(ẽL)}ηjmjEi

}
. (35)

Σ1
P (χ̃0

i , ZẽR), Σ1
P (χ̃0

i , ẽRẽR): To obtain these quanti-
ties one has to exchange in (34) and (35)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j ,

and to change the overall sign of the right hand side
of (34), (35).

2. The contributions of longitudinal polarization s3(χ̃0
i )

read:

Σ3
P (χ̃0

i , ZZ)

= ηi
2g4

cos4 ΘW
|∆s(Z)|2(cL(ZZ) − cR(ZZ))E2

b cos Θ

×
[
|O′′L

ij |2(EiEj + q2)

−[(ReO
′′L
ij )2 − (ImO

′′L∗
ij )2]ηiηjmimj

]
, (36)

Σ3
P (χ̃0

i , ZẽL)

= ηi
g4

cos2 ΘW
cL(ZẽL)E2

b

×
[
Re
{

∆s(Z)[fL
`if

L∗
`j O

′′L∗
ij ∆u∗(ẽL)

−fL∗
`i fL

`jO
′′L
ij ∆t∗(ẽL)]Ejq

}
+Re

{
∆s(Z)[fL

`if
L∗
`j O

′′L∗
ij ∆u∗(ẽL)

+fL∗
`i fL

`jO
′′L
ij ∆t∗(ẽL)](EiEj + q2) cos Θ

}
+Re

{
∆s(Z)[fL

`if
L∗
`j O

′′L∗
ij ∆u∗(ẽL)

−fL∗
`i fL

`jO
′′L
ij ∆t∗(ẽL)]Eiq cos2 Θ

}
−Re

{
∆s(Z)[fL

`if
L∗
`j O

′′L
ij ∆u∗(ẽL)

+fL∗
`i fL

`jO
′′L∗
ij ∆t∗(ẽL)]ηiηjmimj cos Θ

}]
, (37)
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Σ3
P (χ̃0

i , ẽLẽL)

= ηi
g4

4
cL(ẽLẽL)E2

b

[
|fL

`i |2|fL
`j |2

×
{

[|∆u(ẽL)|2 − |∆t(ẽL)|2]Ejq + [|∆u(ẽL)|2

−|∆t(ẽL)|2]qEi cos2 Θ

+[|∆t(ẽL)|2 + |∆u(ẽL)|2](EiEj + q2) cos Θ
}

−2Re{(fL∗
`i )2(fL

`j)
2

×∆u(ẽL)∆t∗(ẽL)}ηiηjmimj cos Θ
]
. (38)

Σ3
P (χ̃0

i , ZẽR), Σ3
P (χ̃0

i , ẽRẽR): To obtain these quanti-
ties one has to exchange in (37) and (38)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

and to change the overall sign of (37), (38).
3. The contributions of the polarization s2(χ̃0

i ) perpen-
dicular to the scattering plane are:

Σ2
P (χ̃0

i , ZZ)

= −4
(

g2

cos2 ΘW

)2

|∆s(Z)|2(cR(ZZ) − cL(ZZ))

×mjqE
2
b sinΘRe(O

′′L
ij )Im(O

′′L
ij ), (39)

Σ2
P (χ̃0

i , ZẽL)

=
g4

cos2 ΘW
cL(ZẽL)ηjmjE

2
b q sinΘ

×Im
{

∆s(Z)
[
fL

`if
L∗
`j O

′′L
ij ∆u∗(ẽL)

−fL∗
`i fL

`jO
′′L∗
ij ∆t∗(ẽL)

]}
, (40)

Σ2
P (χ̃0

i , ẽLẽL)

= −g4

2
cL(ẽLẽL)ηjmjE

2
b q sinΘ

×Im
{

(fL∗
`i )2(fL

`j)
2∆u(ẽL)∆t∗(ẽL)

}
. (41)

Σ2
P (χ̃0

i , ZẽR), Σ2
P (χ̃0

i , ẽRẽR) : To obtain these quanti-
ties one has to exchange in (40) and (41)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

Contrary to the case of s1(χ̃0
i ) and s3(χ̃0

i ) the sign of the
contributions Σ2

P (χ̃0
i ) does not change when going from

ẽL exchange to ẽR exchange.

3.2.2 Polarization of χ̃0
j

We give the quantities Σb
P (χ̃0

j ) of (15) which contain only
the polarization vector sb(χ̃0

j ) with b =1, 2, 3, (29)–(31):

Σb
P (χ̃0

j ) = Σb
P (χ̃0

j , ZZ) + Σb
P (χ̃0

j , ZẽL) + Σb
P (χ̃0

j , ZẽR)

+Σb
P (χ̃0

j , ẽLẽL) + Σb
P (χ̃0

j , ẽRẽR). (42)

1. Σ1
P (χ̃0

j ), Σ3
P (χ̃0

j ): The expressions for Σ1
P (χ̃0

j ), Σ3
P (χ̃0

j )
are obtained from those of Σ1

P (χ̃0
i ), Σ3

P (χ̃0
i ), (33)–(38),

by exchanging

mi → mj , ηi → ηj , Ei → Ej , (43)

and by changing the overall sign of these expressions,
for example,

Σ1
P (χ̃0

j , ZZ)

= −2
g4

cos4 ΘW
|∆(Z)|2E2

b sinΘ(cR(ZZ) − cL(ZZ))

×
[
|O′′L

ij |2ηjmjEi

−[(ReO
′′L
ij )2 − (ImO

′′L
ij )2]ηimiEj

]
. (44)

2. Σ2
P (χ̃0

j ): The expressions for Σ2
P (χ̃0

j ) are obtained from
those for Σ2

P (χ̃0
i ), (39)–(41) by exchanging

ηi → ηj , mi → mj , Ei → Ej (45)

(without changing the overall sign).

Note that

– the transverse polarizations Σ1
P (χ̃0

i ), Σ2
P (χ̃0

i ), Σ1
P (χ̃0

j ),
Σ2

P (χ̃0
j ) of the neutralinos vanish in forward and back-

ward direction;
– at threshold the tranverse polarizations Σ2

P (χ̃0
i ) and

Σ2
P (χ̃0

j ) perpendicular to the production plane vanish
proportional to the momentum of the neutralinos.

3.2.3 Spin-spin correlations

We give the expressions for Σab
P (χ̃0

i χ̃
0
j ) of (15), where a,

b =1, 2, 3 indicate the directions of the polarization vec-
tors sa(χ̃0

i ) and sb(χ̃0
j ) as given in (26)–(31). They can be

decomposed as:

Σab
P (χ̃0

i χ̃
0
j )

= Σab
P (χ̃0

i χ̃
0
j , ZZ) + Σab

P (χ̃0
i χ̃

0
j , ZẽL)

+Σab
P (χ̃0

i χ̃
0
j , ZẽR) + Σab

P (χ̃0
i χ̃

0
j , ẽLẽL)

+Σab
P (χ̃0

i χ̃
0
j , ẽRẽR), with a,b = 1,2,3. (46)

1. The contributions of s1(χ̃0
i ) and s1(χ̃0

j ) are:

Σ11
P (χ̃0

i χ̃
0
j , ZZ)

= 2
g4

cos4 ΘW
|∆s(Z)|2(cR(ZZ) + cL(ZZ))E2

b sin2 Θ

×{[(ReO
′′L
ij )2 − (ImO

′′L
ij )2]EiEj

−2|O′′L
ij |2ηiηjmimj

}
, (47)

Σ11
P (χ̃0

i χ̃
0
j , ZẽL)

=
g4

cos2 ΘW
cL(ZẽL)E2

b sin2 Θ
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×Re
{

[fL
`if

L∗
`j ∆s(Z)∆u∗(ẽL)O

′′L
ij

+fL∗
`i fL

`j∆
s(Z)∆t∗(ẽL)O

′′L∗
ij ]EiEj

−[fL
`if

L∗
`j ∆s(Z)∆u∗(ẽL)O

′′L∗
ij

+fL∗
`i fL

`j∆
s(Z)∆t∗(ẽL)O

′′L
ij ]ηiηjmimj

}
, (48)

Σ11
P (χ̃0

i χ̃
0
j , ẽLẽL)

= −g4

4
cL(ẽLẽL)E2

b sin2 Θ

×
[
|fL

`i |2|fL
`j |2(|∆t(ẽL)|2 + |∆u(ẽL)|2)ηiηjmimj

+2Re
{
(fL∗

`i )2(fL
`j)

2∆u(ẽL)∆t∗(ẽL)
}
EiEj

]
. (49)

Σ11
P (χ̃0

i χ̃
0
j , ZẽR), Σ11

P (χ̃0
i χ̃

0
j , ẽRẽR): To obtain these

quantities one has to exchange in (48) and (49)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

2. The contributions of s2(χ̃0
i ) and s2(χ̃0

j ) are:

Σ22
P (χ̃0

i χ̃
0
j , ZZ)

= 2
g4

cos4 ΘW
|∆s(Z)|2(cR(ZZ) + cL(ZZ))E2

b q2

× sin2 Θ{(ReO
′′L
ij )2 − (ImO

′′L
ij )2}, (50)

Σ22
P (χ̃0

i χ̃
0
j , ZẽL)

=
g4

cos2 ΘW
cL(ZẽL)E2

b q2 sin2 ΘRe
{

∆s(Z)

×[fL
`if

L∗
`j ∆u∗(ẽL)O

′′L
ij + fL∗

`i fL
`j∆

t∗(ẽL)O
′′L∗
ij ]

}
, (51)

Σ22
P (χ̃0

i χ̃
0
j , ẽLẽL)

= −g4

2
cL(ẽLẽL)E2

b q2 sin2 Θ

×Re
{

(fL∗
`i )2(fL

`j)
2∆u(ẽL)∆t∗(ẽL)

}
. (52)

Σ22
P (χ̃0

i χ̃
0
j , ZẽR), Σ22

P (χ̃0
i χ̃

0
j , ẽRẽR): To obtain these

quantities one has to exchange in (51) and (52)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

3. The contributions of s3(χ̃0
i ) and s3(χ̃0

j ) are:

Σ33
P (χ̃0

i χ̃
0
j , ZZ)

= ηiηj
2g4

cos4 ΘW
|∆s(Z)|2(cR(ZZ) + cL(ZZ))E2

b

×
[
((ReO

′′L
ij )2 − (ImO

′′L
ij )2)ηiηjmimj cos2 Θ

−|O′′L
ij |2[q2 + EiEj cos2 Θ]

]
, (53)

Σ33
P (χ̃0

i χ̃
0
j , ZẽL)

= ηiηj
g4

cos2 ΘW
cL(ZẽL)E2

b

×
[
Re
{
∆s(Z)[fL

`if
L∗
`j ∆u∗(ẽL)O

′′L
ij

+fL∗
`i fL

`j∆
t∗(ẽL)O

′′L∗
ij ]

}
ηiηjmimj cos2 Θ

−Re
{
∆s(Z)[fL

`if
L∗
`j ∆u∗(ẽL)O

′′L∗
ij

+fL∗
`i fL

`j∆
t∗(ẽL)O

′′L
ij ]
}
[q2 + EiEj cos2 Θ]

−Re
{
∆s(Z)[fL

`if
L∗
`j ∆u∗(ẽL)O

′′L∗
ij

−fL∗
`i fL

`j∆
t∗(ẽL)O

′′L
ij ]
}
2Ebq cos Θ

]
, (54)

Σ33
P (χ̃0

i χ̃
0
j , ẽLẽL)

= ηiηj
g4

4
cL(ẽLẽL)E2

b

[
|fL

`i |2|fL
`j |2

×
(

− (|∆t(ẽL)|2 + |∆u(ẽL)|2)[q2 + EiEj cos2 Θ]

+(|∆t(ẽL)|2 − |∆u(ẽL)|2)2Ebq cos Θ
)

−2Re
{
(fL∗

`i )2(fL
`j)

2∆u(ẽL)

×∆t∗(ẽL)
}
ηiηjmimj cos2 Θ

]
. (55)

Σ33
P (χ̃0

i χ̃
0
j , ZẽR), Σ33

P (χ̃0
i χ̃

0
j , ẽRẽR): To obtain these

quantities one has to exchange in (54) and (55)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

4. The contributions of s1(χ̃0
i ) and s3(χ̃0

j ) are:

Σ13
P (χ̃0

i χ̃
0
j , ZZ)

= ηj
2g4

cos4 ΘW
|∆s(Z)|2(cR(ZZ) + cL(ZZ))E2

b

× sinΘ cos Θ
[

− ((ReO
′′L
ij )2 − (ImO

′′L
ij )2)Eiηjmj

+|O′′L
ij |2ηimiEj

]
, (56)

Σ13
P (χ̃0

i χ̃
0
j , ZẽL)

= ηj
g4

cos2 ΘW
cL(ZẽL)E2

b sinΘ
[

− Re
{
∆s(Z)

×[fL
`if

L∗
`j ∆u∗(ẽL)O

′′L
ij + fL∗

`i fL
`j∆

t∗(ẽL)O
′′L∗
ij ]

}
×Eiηjmj cos Θ + Re

{
∆s(Z)[fL

`if
L∗
`j ∆u∗(ẽL)O

′′L∗
ij

+fL∗
`i fL

`j∆
t∗(ẽL)O

′′L
ij ]
}
ηimiEj cos Θ

+Re
{
∆s(Z)[fL

`if
L∗
`j ∆u∗(ẽL)O

′′L∗
ij

−fL∗
`i fL

`j∆
t∗(ẽL)O

′′L
ij ]
}
ηimiq

]
, (57)

Σ13
P (χ̃0

i χ̃
0
j , ẽLẽL)

= ηj
g4

4
cL(ẽLẽL)E2

b sinΘ
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×
[
|fL

`i |2|fL
`j |2
{
[|∆u(ẽL)|2 − |∆t(ẽL)|2]ηimiq

+[|∆t(ẽL)|2 + |∆u(ẽL)|2]ηimiEj cos Θ
}

+2Re
{
(fL∗

`i )2(fL
`j)

2∆u(ẽL)

×∆t∗(ẽL)
}
Eiηjmj cos Θ

]
. (58)

Σ13
P (χ̃0

i χ̃
0
j , ZẽR), Σ13

P (χ̃0
i χ̃

0
j , ẽRẽR): To obtain these

quantities one has to exchange in (57) and (58)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR)
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j .

5. The contributions of s3(χ̃0
i ) and s1(χ̃0

j ) are:
The expressions for Σ31

P (χ̃0
i χ̃

0
j ) are obtained by ex-

changing

ηi ↔ ηj , mi ↔ mj , Ei ↔ Ej (59)

in (56)–(58) and also in the corresponding contribu-
tions from ẽR exchange.

6. The contributions of s1(χ̃0
i ) and s2(χ̃0

j ) are:

Σ12
P (χ̃0

i χ̃
0
j , ZZ)

= 2
g4

cos4 ΘW
|∆s(Z)|2(cR(ZZ) + cL(ZZ))E2

b Eiq

× sin2 ΘRe(O
′′L
ij )Im(O

′′L
ij ), (60)

Σ12
P (χ̃0

i χ̃
0
j , ZẽL)

=
g4

cos2 ΘW
cL(ZẽL)E2

b Eiq sin2 ΘIm
{

∆s(Z)[fL
`if

L∗
`j

×∆u∗(ẽL)O
′′L
ij + fL∗

`i fL
`j∆

t∗(ẽL)O
′′L∗
ij ]

}
, (61)

Σ12
P (χ̃0

i χ̃
0
j , ẽLẽL)

=
g4

2
cL(ẽLẽL)E2

b Eiq sin2 Θ

×Im
{

(fL∗
`i )2(fL

`j)
2∆u(ẽL)∆t∗(ẽL)

}
. (62)

Σ12
P (χ̃0

i χ̃
0
j , ZẽR), Σ12

P (χ̃0
i χ̃

0
j , ẽRẽR): To obtain these

quantities one has to exchange in (61) and (62)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j ,

and to change the overall sign of (61), (62).
7. The contributions of s2(χ̃0

i ) and s1(χ̃0
j ) are:

The expressions for Σ21
P (χ̃0

i χ̃
0
j ) are obtained by ex-

changing

ηi ↔ ηj , mi ↔ mj , Ei ↔ Ej (63)

in (60)–(62) and in the corresponding contributions
from ẽR exchange. In addition, one also has to change
the overall sign.

8. The contributions of s2(χ̃0
i ) and s3(χ̃0

j ) are:

Σ23
P (χ̃0

i χ̃
0
j , ZZ)

=
2g4

cos4 ΘW
|∆s(Z)|2[cR(ZZ) + cL(ZZ)]

×mjE
2
b q sinΘ cos ΘRe(O

′′L
ij )Im(O

′′L
ij ), (64)

Σ23
P (χ̃0

i χ̃
0
j , ZẽL)

=
g4

cos2 ΘW
cL(ZẽL)E2

b mjq sinΘ cos ΘIm
{

∆s(Z)

×[fL
`if

L∗
`j ∆u∗(ẽL)O

′′L
ij + fL∗

`i fL
`j∆

t∗(ẽL)O
′′L∗
ij ]

}
, (65)

Σ23
P (χ̃0

i χ̃
0
j , ẽLẽL)

=
g4

2
cL(ẽLẽL)E2

b mjq sinΘ cos Θ

×Im
{

(fL∗
`i )2(fL

`j)
2∆u(ẽL)∆t∗(ẽL)

}
. (66)

Σ23
P (χ̃0

i χ̃
0
j , ZẽR), Σ23

P (χ̃0
i χ̃

0
j , ẽRẽR): To obtain these

quantities one has to exchange in (65) and (66)

∆t(ẽL) → ∆t(ẽR), ∆u(ẽL) → ∆u(ẽR),
cL(ZẽL) → cR(ZẽR), cL(ẽLẽL) → cR(ẽRẽR),

O
′′L
ij → O

′′R
ij , fL

`i → fR
`i , fL

`j → fR
`j ,

and to change the overall sign of (65), (66).
9. The contributions of s3(χ̃0

i ) and s2(χ̃0
j ) are:

The expressions for Σ32
P (χ̃0

i χ̃
0
j ) are obtained by ex-

changing
mi ↔ mj , Ei ↔ Ej (67)

in (64)–(66) and in the corresponding contributions
from ẽR exchange. In addition, one also has to change
the overall sign.

Note that

– all contributions of transverse polarizations s1(χ̃0
i ),

s2(χ̃0
i ), s1(χ̃0

j ), s2(χ̃0
j ) vanish in forward and backward

direction;
– at threshold all spin-spin terms of transverse polariza-

tions s2(χ̃0
i ), s2(χ̃0

j ) vanish proportional to the momen-
tum of the neutralinos.

4 Decay matrix

In the following we give the analytical formulae for the
decay matrices D(χ̃0

i ), Σa
D(χ̃0

i ) for the decay χ̃0
i (p3) →

χ̃0
k(p5)+`+(p6)+`−(p7), and D(χ̃0

j ), Σb
D(χ̃0

j ) for the decay
χ̃0

j (p4) → χ̃0
l (p8) + `+(p9) + `−(p10). We present them

in covariant form. They have to be inserted in (15) to
obtain the amplitude squared for the combined process of
neutralino production and decay.

4.1 Neutralino polarization independent quantities

The expression D(χ̃0
i ) of (15) which is independent of the

polarization vector sa(χ̃0
i ) has the following decomposi-
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tion:

D(χ̃0
i ) = D(χ̃0

i , ZZ) + D(χ̃0
i , Z

˜̀
L) + D(χ̃0

i , Z
˜̀
R)

+D(χ̃0
i ,

˜̀
L

˜̀
L) + D(χ̃0

i ,
˜̀
R

˜̀
R). (68)

The analytical expressions for D(χ̃0
i ), (68), read:

D(χ̃0
i , ZZ)

= 8
g4

cos4 ΘW
|∆si(Z)|2(L2

` + R2
` )
[
|O′′L

ki |2(g1 + g2)

+[(ReO
′′L
ki )2 − (ImO

′′L
ki )2]g3

]
, (69)

D(χ̃0
i , Z

˜̀
L)

= 4
g4

cos2 ΘW
L`Re

{
∆si(Z)

[
fL

`if
L∗
`k ∆ti∗(˜̀L)(2O

′′L
ki g1

+O
′′L∗
ki g3) + fL∗

`i fL
`k∆ui∗(˜̀L)(2O

′′L∗
ki g2+O

′′L
ki g3)

]}
,(70)

D(χ̃0
i ,

˜̀
L

˜̀
L)

= 2g4
[
|fL

`i |2|fL
`k|2(|∆ti(˜̀L)|2g1 + |∆ui(˜̀L)|2g2

)
+Re

{
(fL∗

`i )2(fL
`k)2∆ti(˜̀L)∆ui∗(˜̀L)

}
g3

]
, (71)

where we have introduced the following combinations of
scalar products:

g1 = (p5p7)(p3p6), (72)
g2 = (p5p6)(p3p7), (73)
g3 = ηiηkmimk(p6p7). (74)

The propagators are denoted by ∆si(Z), ∆ti(˜̀L,R),
∆ui(˜̀L,R) and are defined analogously to (20), with si,
ti, ui as defined after (12).

D(χ̃0
i , Z

˜̀
R), D(χ̃0

i ,
˜̀
R

˜̀
R): To obtain these quantities

one has to exchange in (70) and (71)

∆ti(˜̀L) → ∆ti(˜̀R), ∆ui(˜̀L) → ∆ui(˜̀R),

O
′′L
ki → O

′′R
ki , fL

`i → fR
`i , L` → R`.

The expressions Dj(χ̃0
j ), (15), for the decay χ̃0

j (p4) →
χ̃0

l (p8) + `+(p9) + `−(p10) and the corresponding scalar
products are obtained by the following substitutions in
(69)–(74):

p5 → p8, p6 → p9, p7 → p10,

mi → mj , mk → ml, ηi → ηj , ηk → ηl, (75)

OL
ki → OL

lj , OR
ki → OR

lj , (76)

∆si(Z) → ∆sj (Z), ∆ti(˜̀L,R) → ∆tj (˜̀L,R),

∆ui(˜̀L,R) → ∆uj (˜̀L,R). (77)

4.2 Neutralino polarization dependent quantities

We first give Σa
D(χ̃0

i ) of (15) which contains the polariza-
tion vector sa(χ̃0

i ):

Σa
D(χ̃0

i ) = Σa
D(χ̃0

i , ZZ) + Σa
D(χ̃0

i , Z
˜̀
L) + Σa

D(χ̃0
i , Z

˜̀
R)

+Σa
D(χ̃0

i ,
˜̀
L

˜̀
L) + Σa

D(χ̃0
i ,

˜̀
R

˜̀
R). (78)

The analytical expressions for Σa
D(χ̃0

i ), (78), read:

Σa
D(χ̃0

i , ZZ)

= 8
g4

cos4 ΘW
|∆si(Z)|2(R2

` − L2
`)
[

− [(ReO
′′L
ki )2

−(ImO
′′L
ki )2]ga

3 + |O′′L
ki |2(ga

1 − ga
2 )
]
, (79)

Σa
D(χ̃0

i , Z
˜̀
L)

=
4g4

cos2 ΘW
L`Re

{
∆si(Z)

[
fL

`if
L∗
`k ∆ti∗(˜̀L)

×(− 2O
′′L
ki ga

1 + O
′′L∗
ki (ga

3 − ga
4 )
)

+fL∗
`i fL

`k∆ui∗(˜̀L)
(
2O

′′L∗
ki ga

2 + O
′′L
ki (ga

3 − ga
4 )
)]}

,(80)

Σa
D(χ̃0

i ,
˜̀
L

˜̀
L)

= 2g4
[
|fL

`i |2|fL
`k|2[|∆ui(˜̀L)|2ga

2 − |∆ti(˜̀L)|2ga
1 ]

+Re
{
(fL∗

`i )2(fL
`k)2∆ti(˜̀L)∆ui∗(˜̀L)(ga

3 + ga
4 )
}]

, (81)

where we have introduced the following abbrevations in-
volving the polarization vector sa(χ̃0

i ), (26)–(28), with a =
1, 2, 3:

ga
1 = ηimi(p5p7)(p6s

a(χ̃0
i )), (82)

ga
2 = ηimi(p5p6)(p7s

a(χ̃0
i )), (83)

ga
3 = ηkmk[(p3p6)(p7s

a(χ̃0
i )) − (p3p7)(p6s

a(χ̃0
i ))], (84)

ga
4 = iηkmkεµνρτsaµ(χ̃0

i )p
ν
3pρ

7p
τ
6 . (85)

Σa
D(χ̃0

i , Z
˜̀
R), Σa

D(χ̃0
i ,

˜̀
R

˜̀
R): To obtain these quanti-

ties one has to exchange in (80) and (81)

∆ti(˜̀L) → ∆ti(˜̀R), ∆ui(˜̀L) → ∆ui(˜̀R),

O
′′L
ki → O

′′R
ki , fL

`i → fR
`i , L` → R`.

In addition, one has to change the sign of ga
1 , ga

2 , ga
3 , but

not of ga
4 .

The expression ga
4 can be expanded in triple product

correlations which are sensitive to the component of the
spin vector perpendicular to the scattering plane.

The corresponding expressions Σb
D(χ̃0

j ), (15), for the
decay χ̃0

j (p4) → χ̃0
l (p8)+ `+(p9)+ `−(p10) are obtained by

the same substitutions as (75)–(77), and the additional
substitution sa(χ̃0

i ) → sb(χ̃0
j ) in (82)–(85).

5 Numerical results
In the following numerical analysis we study e+e− → χ̃0

1χ̃
0
2

with χ̃0
2 → χ̃0

1e
+e− for various polarizations of the e−

beam. The calculations are done in the MSSM. We take
the parameters M ′, M , µ, tanβ real. Since we want to
study the influence of the parameter M ′ we do not use
a relation between M ′ and M . We will also study the
dependence on the selectron masses mẽL

, mẽR
.

We shall choose three different examples of parameter
sets. In all these examples we choose M = 152 GeV, µ =
316 GeV, tan β = 3, and vary M ′ between 40 GeV and 160
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Fig. 2. M ′ dependence of the cross section σe (defined in
(86)) near threshold (

√
s = mχ̃0

1
+ mχ̃0

2
+ 50 GeV) with

M = 152 GeV, µ = 316 GeV, tan β = 3, mẽL = 1000 GeV,
and mẽR = 200 GeV for the three cases: unpolarized beams
(solid line), e− beam polarized, P 3

− = +90% (dotted line) and
P 3

− = −90% (dash-dotted line).

GeV. Especially the mass of the χ̃0
1 is very sensitive to M ′.

For these parameters χ̃0
1 and χ̃0

2 are dominantly gauginos
and have small couplings to Z0. For the selectron masses
we take

i) mẽL
= 1000 GeV, mẽR

= 200 GeV;
ii) mẽL

= 200 GeV, mẽR
= 1000 GeV;

iii) mẽL
= 176 GeV, mẽR

= 161 GeV.

In i) and ii) we want to study the influence of ẽL and
ẽR exchange for large selectron mass splitting. Scenario
ii) with mẽR

> mẽL
may be realized in extended SUSY

models [20]. For M ′ = 78.7 GeV, example iii) corresponds
to the mSUGRA scenario studied in [21], except for mẽR

which in our case is set equal to mν̃ . In iii) we want to
study the case of small selectron mass splitting.

We present results for the cross section

σe = σ(e+e− → χ̃0
1χ̃

0
2)BR(χ̃0

2 → χ̃0
1e

+e−), (86)

and the forward–backward asymmetry

AFB =
σe(cos Θ− > 0) − σe(cos Θ− < 0)
σe(cos Θ− > 0) + σe(cos Θ− < 0)

(87)

of the electron from the decay χ̃0
2 → χ̃0

1e
+e−. In (87) Θ−

is the angle between the incoming electron beam and the
outgoing e−.

The forward–backward asymmetry AFB is largest near
the production threshold. We therefore study in all three
examples σe and AFB at

√
s = mχ̃0

1
+ mχ̃0

2
+ 50 GeV,

and in example iii) also at
√

s = 500 GeV. As for the
polarization of the e− beam we take P 3

− = ±90%.

5.1 Cross sections

We first study the M ′ dependence of σe = σ(e+e− →
χ̃0

1χ̃
0
2)BR(χ̃0

2 → χ̃0
1e

+e−) near the production threshold

Fig. 3. M ′ dependence of the lepton forward–backward asym-
metry AFB near threshold (

√
s = mχ̃0

1
+ mχ̃0

2
+ 50 GeV) with

M = 152 GeV, µ = 316 GeV, tan β = 3, mẽL = 1000 GeV,
and mẽR = 200 GeV for the three cases: unpolarized beams
(solid line), e− beam polarized, P 3

− = +90% (dotted line) and
P 3

− = −90% (dash-dotted line).

(
√

s = mχ̃0
1
+mχ̃0

2
+50 GeV). We begin with case i), where

ẽL exchange is suppressed. Figure 2 shows the correspond-
ing M ′ dependence for unpolarized beams and for the e−
beam polarizations P 3

− = +90% and P 3
− = −90%, with

M, µ and tanβ as given above. Clearly, a right polarized
e− beam yields the largest cross section because it en-
hances the ẽR exchange. The production cross section for
e+e− → χ̃0

1χ̃
0
2 has a maximum at M ′ ≈ 130 GeV, where

also the ẽR exchange contribution is maximal. The cross
section σe, (86), has its maximum at M ′ ≈ 118 GeV. This
shift is due to the fact that the leptonic decay branching
ratio of χ̃0

2 has a maximum at M ′ ≈ 118 GeV and then
strongly decreases.

Obviously, the characters of χ̃0
1 and χ̃0

2 change with
varying M ′. With increasing M ′ the B̃ component of χ̃0

1
decreases and the W 3-ino and the higgsino components
increase. The opposite is true for χ̃0

2. The Z0 couplings are
small and almost constant up to M ′ ≈ 120 GeV, O

′′L
12 ≈

0.015, and decrease for larger M ′. The product of the ẽR

couplings, |fR
e1f

R
e2|, has a maximum at M ′ ≈ 130 GeV.

We compare this with case ii), where ẽR exchange is
suppressed. Figure 4 shows the corresponding M ′ depen-
dence. Now a left polarized e− beam leads to the largest
cross section because the ẽL exchange is favoured. There
is a maximum at M ′ ≈ 60 GeV and a minimum at M ′ ≈
120 GeV. The maximum at M ′ ≈ 60 GeV can be ex-
plained by a corresponding maximum of the leptonic
branching ratio. The minimum at M ′ ≈ 120 GeV is due
to the vanishing of eẽLχ̃0

1 coupling fL
e1 at this value of M ′.

In example iii) the mass difference between ẽL and ẽR

is small. Therefore, ẽL and ẽR exchange contribute. We
show in Figs. 6 and 8 the M ′ dependence for this case
near threshold and at

√
s = 500 GeV, respectively. For

right polarized e− beams the cross section behaviour is
similar to that of case i), and for left polarized e− beams
it is similar to that of case ii). At

√
s = 500 GeV the cross

section is about a factor 2 bigger than near threshold but
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Fig. 4. M ′ dependence of the cross section σe (defined in
(86)) near threshold (

√
s = mχ̃0

1
+ mχ̃0

2
+ 50 GeV) with

M = 152 GeV, µ = 316 GeV, tan β = 3, mẽL = 200 GeV,
and mẽR = 1000 GeV for the three cases: unpolarized beams
(solid line), e− beam polarized, P 3

− = +90% (dotted line) and
P 3

− = −90% (dash-dotted line).

Fig. 5. M ′ dependence of the lepton forward–backward asym-
metry AFB near threshold (

√
s = mχ̃0

1
+ mχ̃0

2
+ 50 GeV) with

M = 152 GeV, µ = 316 GeV, tan β = 3, mẽL = 200 GeV,
and mẽR = 1000 GeV for the three cases: unpolarized beams
(solid line), e− beam polarized, P 3

− = +90% (dotted line) and
P 3

− = −90% (dash-dotted line).

has a similar M ′ dependence. In all cases there is a small
step at about M ′ = 42 − 44 GeV, which is due to the
opening of the two-body decay χ̃0

2 → χ̃0
1Z

0.

5.2 Lepton forward–backward asymmetries

In this subsection we study the M ′ dependence of the
forward–backward asymmetry AFB of the decay electron
e−, as defined in (87). The decay electron angular distri-
butions and the corresponding forward–backward asym-
metry are very sensitive to the spin correlations Σa

P Σa
D,

(Σb
P Σb

D), (15), and are the result of a complex interplay
between production and decay. As the spin correlations
between production and decay are strongest near thresh-

Fig. 6. M ′ dependence of the cross section σe (defined in (86))
near threshold (

√
s = mχ̃0

1
+mχ̃0

2
+50 GeV) with M = 152 GeV,

µ = 316 GeV, tan β = 3, mẽL = 176 GeV, and mẽR = 161 GeV
for the three cases: unpolarized beams (solid line), e− beam
polarized, P 3

− = +90% (dotted line) and P 3
− = −90% (dash-

dotted line).

Fig. 7. M ′ dependence of the lepton forward–backward asym-
metry AFB near threshold (

√
s = mχ̃0

1
+ mχ̃0

2
+ 50 GeV) with

M = 152 GeV, µ = 316 GeV, tan β = 3, mẽL = 176 GeV,
and mẽR = 161 GeV for the three cases: unpolarized beams
(solid line), e− beam polarized, P 3

− = +90% (dotted line) and
P 3

− = −90% (dash-dotted line).

old, the forward–backward asymmetry will also be largest
there.

We show in Figs. 3, 5, and 7 AFB near threshold as a
function of M ′ for the cases i), ii), and iii), respectively.
As can be seen AFB is very sensitive to the masses of ẽL

and ẽR, and the mass splitting between them. In all cases
AFB has a pronounced M ′ dependence. The selectron cou-
plings fL

ei and fR
ei , i =1, 2, exhibit a characteristic M ′ de-

pendence, which is reflected in the M ′ behaviour of AFB .
Moreover, by choosing different e− beam polarizations the
ẽL and ẽR contributions can be enhanced or suppressed.

The small dip of the asymmetry at M ′ = 42− 44 GeV
is due to the opening of the two-body decay χ̃0

2 → χ̃0
1Z

0.
The behaviour of AFB in Fig. 5 at about M ′ = 115 −

125 GeV is due to the vanishing of eẽLχ̃0
1 coupling fL

e1 at
M ′ ≈ 120 GeV and a complicated interplay between the
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Fig. 8. M ′ dependence of the cross section σe (defined in (86))
at

√
s = 500 GeV with M = 152 GeV, µ = 316 GeV, tan β = 3,

mẽL = 176 GeV, and mẽR = 161 GeV for the three cases: un-
polarized beams (solid line), e− beam polarized, P 3

− = +90%
(dotted line) and P 3

− = −90% (dash-dotted line).

Fig. 9. M ′ dependence of the lepton forward–backward asym-
metry AFB at

√
s = 500 GeV with M = 152 GeV, µ =

316 GeV, tan β = 3, mẽL = 176 GeV, and mẽR = 161 GeV for
the three cases: unpolarized beams (solid line), e− beam polar-
ized, P 3

− = +90% (dotted line) and P 3
− = −90% (dash-dotted

line).

Z0, ẽL and ẽR contributions, which are all very small (see
Fig. 4).

In Fig. 9 we show the M ′ dependence of AFB at
√

s =
500 GeV for case iii). This is very similar to that near
threshold, Fig. 7, but the magnitude is smaller by a factor
2 to 3, because with increasing

√
s the spin correlations

decrease.
A numerical analysis for both beams polarized has

been given in [11] and will be continued in [22].

6 Summary

We have given the full analytical expressions for the dif-
ferential cross section for e+e− → χ̃0

i χ̃
0
j with polarized

beams and the subsequent leptonic decays χ̃0
i → `+`−χ̃0

k
and χ̃0

j → `+`−χ̃0
l , taking into account the complete spin

correlations between production and decay. The produc-
tion spin density matrix is presented in the laboratory
system. The formulae for the decay processes are written
covariantly involving explicitly the neutralino polarization
vectors. When combining the production and decay pro-
cess the polarization vectors in the laboratory system as
given in (26)–(31) have to be taken.

We have presented numerical results for the cross sec-
tion and the lepton forward–backward asymmetry for e+e−
→ χ̃0

1χ̃
0
2, χ̃0

2 → χ̃0
1e

+e−. We have studied the dependence
on the parameter M ′ for various mass splittings between
ẽL and ẽR and different e− beam polarizations.

The cross section σe shows a characteristic dependence
on M ′ and the masses of the exchanged selectrons as well
as on the beam polarization.

The lepton forward–backward asymmetry AFB can
only be explained by the presence of spin correlations be-
tween production and decay, as it would be zero in the
production process alone. AFB depends very sensitively on
the SUSY parameters and the beam polarizations. There-
fore, this quantity is an additional useful observable for
a more precise determination of the parameters. Different
beam polarizations help disentangle the contribution from
ẽL and ẽR exchange.
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Appendices

A Amplitudes

We give the helicity amplitudes T
λiλj

P (α, β) for production
and TD,λi(α, β), TD,λj (α, β) for the decays, corresponding
to the Feynman diagrams in Fig. 1 (α denotes the channel,
β denotes the exchanged particle).

The amplitudes T
λiλj

P (α, β) for the production, e−(p1)
e+(p2) → χ̃0

i (p3)χ̃0
j (p4) read:

T
λiλj

P (s, Z) =
g2

cos2 ΘW
∆s(Z)v̄(p2)γµ(L`PL + R`PR)u(p1)

×ū(p4, λj)γµ(O
′′L
ji PL + O

′′R
ji PR)

×v(p3, λi), (A.1)

T
λiλj

P (t, ˜̀
L) = −g2fL

`if
L∗
`j ∆t(˜̀L)v̄(p2)PRv(p3, λi)

×ū(p4, λj)PLu(p1), (A.2)

T
λiλj

P (t, ˜̀
R) = −g2fR

`i f
R∗
`j ∆t(˜̀R)v̄(p2)PLv(p3, λi)

×ū(p4, λj)PRu(p1), (A.3)
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T
λiλj

P (u, ˜̀
L) = g2fL∗

`i fL
`j∆

u(˜̀L)v̄(p2)PRv(p4, λj)

×ū(p3, λi)PLu(p1), (A.4)

T
λiλj

P (u, ˜̀
R) = g2fR∗

`i fR
`j∆

u(˜̀R)v̄(p2)PLv(p4, λj)

×ū(p3, λi)PRu(p1). (A.5)

The amplitudes TD,λi
(α, β) for the decay of the χ̃0

i (p3) →
χ̃0

k(p5)`+(p6)`−(p7) read:

TD,λi(si) = − g2

cos2 ΘW
∆si(Z)ū(p7)γµ(L`PL + R`PR)

×v(p6)ū(p5)γµ(O
′′L
ki PL + O

′′R
ki PR)

×u(p3, λi), (A.6)

TD,λi(ti, ˜̀
L) = −g2fL

`kfL∗
`i ∆ti(˜̀L)ū(p7)PRv(p5)

×v̄(p3, λi)PLv(p6), (A.7)

TD,λi
(ti, ˜̀

R) = −g2fR
`kfR∗

`i ∆ti(˜̀R)ū(p7)PLv(p5)
×v̄(p3, λi)PRv(p6), (A.8)

TD,λi
(ui, ˜̀

L) = +g2fL
`if

L∗
`k ∆ui(˜̀L)ū(p7)PRu(p3, λi)

×ū(p5)PLv(p6), (A.9)

TD,λi(ui, ˜̀
R) = +g2fR

`i f
R∗
`k ∆ui(˜̀R)ū(p7)PLu(p3, λi)

×ū(p5)PRv(p6). (A.10)

The corresponding amplitudes TD,λj (α, β) for the decay
of the χ̃0

j (p4) → χ̃0
l (p8)`+(p9)`−(p10) are obtained by ex-

changing in (A.6)–(A.10):

si → sj , ti → tj , ui → uj , ∆si → ∆sj ,

∆ti → ∆tj , ∆ui → ∆uj , (A.11)
p5 → p8, p6 → p9, p7 → p10,

OL
ki → OL

lj , O
R
ki → OR

lj . (A.12)

B Spin formalism

The amplitude for the whole process, (13), is

T = ∆(χ̃+
i )∆(χ̃−

j )
∑
λi,λj

T
λiλj

P TD,λi
TD,λj

, (B.1)

with the helicity amplitude T
λiλj

P for the production pro-
cess and TD,λi

, TD,λj
for the decay processes, and the

propagators ∆(χ̃±
i,j) = 1/[p2

i,j − m2
i,j + imi,jΓi,j ]. Here

λi,j , p
2
i,j , mi,j , Γi,j denote the helicity, four–momentum

squared, mass and width of χ̃±
i,j . The amplitude squared

|T |2 = |∆(χ̃+
i )|2|∆(χ̃−

j )|2ρλiλjλ′
iλ

′
j

P ρD,λ′
i
λi

ρD,λ′
j
λj

(B.2)

(sum convention used) is thus composed of the (unnor-
malized) spin density production matrix

ρ
λiλjλ′

iλ
′
j

P = T
λiλj

P T
λ′

iλ
′
j∗

P (B.3)

of χ̃0
i,j and the decay matrices

ρD,λ′
i
λi

=TD,λi
T ∗

D,λ′
i
and ρD,λ′

j
λj

= TD,λj
T ∗

D,λ′
j
. (B.4)

Introducing a suitable set of polarization vectors for each
of the neutralinos one can expand the spin density matrix
of the production process and the decay matrices of both
neutralinos in terms of Pauli matrices.

The spin density production matrix reads:

ρ
λiλjλ′

iλ
′
j

P = δλiλ′
i
δλjλ′

j
P + δλjλ′

j

∑
a

σa
λiλ′

i
Σa

P (χ̃0
i )

+δλiλ′
i

∑
b

σb
λjλ′

j
Σb

P (χ̃0
j )

+
∑
ab

σa
λiλ′

i
σb

λjλ′
j
Σab

P (χ̃0
i χ̃

0
j ), (B.5)

and the matrices for the decays read:

ρD,λ′
i
λi

= δλ′
i
λi

D(χ̃0
i ) +

∑
a

σa
λ′

i
λi

Σa
D(χ̃0

i ), (B.6)

ρD,λ′
j
λj

= δλ′
j
λj

D(χ̃0
j ) +

∑
b

σb
λ′

j
λj

Σb
D(χ̃0

j ). (B.7)
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5. A. Bartl, B. Mößlacher, W. Majerotto, in ‘e+e− Collisions
at 500 GeV: The Physics Potential’, Part B, DESY 92–
123B, p. 641, ed. by P.M. Zerwas

6. S. Kawasaki, T. Shirafuji, S.Y. Tsai, Progress of Theor.
Phys., 49, 1656 (1973)

7. D.A. Dicus, E.C.G. Sudarshan, X. Tata, Phys. Lett. B 154,
79 (1985)

8. J.L. Feng, M.J. Strassler, Phys. Rev. D 55, 1326 (1997)
9. DFGT: C. Dionisi, K. Fujii, S. Giagu, T. Tsukamoto, in

Physics at LEP2, CERN 96-01, Vol. 2, p. 337, eds. G.
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